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I’ll have a battery system, please!
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Why a battery?

•Expensive

•Battery cost

•Converter cost

• Integration cost

•Relatively big

•Electrical losses

•Dead within 2 years
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Matthijs Mosselaar Akhil Ajith

Background: MSc Electrical Power Engineering

TU Delft

Occupation: (Electrical) Engineer

- Hybrid systems

- Modelling/Simulation

- Power Quality / EMC

Background: MSc Sustainable Energy Technology

TU Delft

Occupation: (Electrical) Engineer

- Hardware In Loop real-time 

modelling & hybrid EMS design

- Data Analyst

Introduction
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Agenda / Index

1. Introduction Alewijnse

2. The cost of a Battery Energy Storage System

3. Operational profile analysis

– Less than ideal

– Ideal

4. Optimizing the system

5. Coffee break

6. DC vs AC (hybrid systems)

7. Filter design & power quality

8. Key takeaways & Questions/discussions
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Alewijnse

▪ All-round technological partner with over 130 years of experience in Maritime 

and Industry

▪ Working in 4 segments:

– Yachting

– Dredging, offshore & transport

– Naval & governmental

– Industry

▪ New build, refit, solutions, panel-building, repair & maintenance projects

▪ International footprint, own branches in the Netherlands, Romania, France, 
Spain and Vietnam

▪ Competent & flexible, +/- 130 engineers, +/- 600 electrical installers
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Our History – over a century of experience

Start: 
Light bulb 

factory 
Roothaan, 

Alewijnse & Co

1 8 8 9 - 1 8 9 9

Electrical 
installation 
company C. 

Alewijnse & Co

1 9 0 0 - 1 9 4 5

Strong growth in 
electrical 

installations of 
factories and 

vessels

1 9 4 5 - 1 9 6 2

Start and take-
over companies 
in Vlaardingen, 
Tiel, Drachten, 

Zwolle, 
Zaltbommel and 

Delft

1 9 6 2 - 1 9 8 0

Emergence of ICT, 
start-up company
in Romania, take-
over company in 

Krimpen a/d IJssel

1 9 8 0 - 2 0 0 2

Internationalization 
and focus on 

engineering and 
automation

P R E S E N T2 0 0 2 - 2 0 1 5

Take over by SRC, 
Common Wealth & 

Damen. Further 
focus on system 

integration. Tijssen
Elektro added to 

the Alewijnse group
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Our locations The Netherlands
Nijmegen (HQ),
Rotterdam,
Drachten,
Oss

Romania
Galati, 
Mangalia

France
La Ciotat

Spain
Vilanova

Vietnam
Hai Phong
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▪ Our solutions

▪ Vessel automation

▪ Process automation

▪ Navigation & Communication Systems

▪ Electric Installation

▪ Switchboards & Consoles

▪ Power Distribution

▪ Drive Systems

▪ Hybrid Systems

▪ Audio/Video & IT

▪ Safety & Security

What we offer
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R&D
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Thesis projects



R&D
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Partners

Strong collaboration with universities
Multiple internships and thesis projects realised

MATLAB & Simulink simulation software
Advanced data visualisation and time domain analysis

ETAP simulation software
Advanced power system analysis studies



Consultancy
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▪ Early involvement

▪ Total Cost of Ownership Analyses

▪ Data Analysis-Based Modelling

▪ Maintenance Analysis

▪ Improvement in Overall Equipment Effectiveness

▪ Bridge gap between concept design, basic design

and commercial viability



Our customers 
Whom we connect
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Let’s do the math

• Battery price €500,-/kWh

• Converter cost

• Integration/EMS cost

• Losses

• Limited lifetime
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200kWh battery:  €100.000
400kW converter: €150.000

= €250.000

Fuel price: €750/mt
Fuel amount: 333mt
Fuel price: €500/mt
Fuel amount: 500mt



Battery specifications

▪ High power

▪ High energy

▪ Chemistry

▪ Ageing
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C-rate = 
power (kW)

energy (kWh)

C-rate < 0,8: high energy
C-rate > 0,8: high power



Battery specifications

16



Battery specifications
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How do you use the battery?
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Operational profile
Less than ideal case
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Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10 Day 11 Day 12 Day 13 Day 14
Operating mode 1 0,21 0,21 0,21 0,21 0,21 0,21 0,24 0,21 0,21 0,21 0,21 0,21 0,21 0,24 3
Operating mode 2 1,19 1,19 1,19 1,19 1,19 1,19 1,34 1,19 1,19 1,19 1,19 1,19 1,19 1,34 17
Operating mode 3 3,51 3,51 3,51 3,51 3,51 3,51 3,94 3,51 3,51 3,51 3,51 3,51 3,51 3,94 50
Operating mode 4 2,39 2,39 2,39 2,39 2,39 2,39 2,68 2,39 2,39 2,39 2,39 2,39 2,39 2,68 34
Operating mode 5 2,39 2,39 2,39 2,39 2,39 2,39 2,68 2,39 2,39 2,39 2,39 2,39 2,39 2,68 34
Operating mode 6 2,39 2,39 2,39 2,39 2,39 2,39 2,68 2,39 2,39 2,39 2,39 2,39 2,39 2,68 34
Operating mode 7 3,51 3,51 3,51 3,51 3,51 3,51 3,94 3,51 3,51 3,51 3,51 3,51 3,51 3,94 50
Operating mode 8 8,42 8,42 8,42 8,42 8,42 8,42 8,42 8,42 8,42 8,42 8,42 8,42 101
Operating mode 9 6,5 6,5 13

24 24 24 24 24 24 24 24 24 24 24 24 24 24

▪ Create operational based on operating mode power and time

▪ Example for an ’80 percent full-electric vessel’



Operational profile
Less than ideal case
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Battery energy
Simulation of operational profile
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Operational profile
Simulation of operational profile
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Operational profile
Simulation of operational profile
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Operational profile
Ideal case
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Generator maintenance
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[1] Carlos Frederico Matt et al. “Optimization of the Operation of Isolated Industrial Diesel Stations”



Fuel consumption
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Source: Vessel Owner



Generator maintenance
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Event analysis
Taiwan Strait load profile
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Event analysis
North Sea load profile
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Generator loading
Taiwan load profile
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Generator loading
Taiwan load profile
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Generator loading
North Sea load profile
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Generator loading
North Sea load profile
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Optimizing fuel consumption & MTBO
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▪ What are studies optimizing?

Fuel Consumption

88%

Storage 
System

53%

Emission 
Reduction

15%

DG 
Sizing

15%

Voyage

12%

Carbon
Capture

8%



Optimizing fuel consumption & MTBO
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Ref: Monaaf D. A. Al-Falahi, AC Ship Microgrids: Control and Power Management Optimization



Optimizing fuel consumption & MTBO
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Date Date Date
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Date Date Date

Cumulative fuel consumed

North Sea

Optimizing fuel consumption & MTBO
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Optimizing fuel consumption & MTBO
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Optimizing fuel consumption & MTBO

Fuel Price (Euro/ton)

Fuel Price (Euro/ton)

BESS operation matrix

Solution 1,7,10

Solution 2,4,11

Solution 3,5,6,8,9,12

Fuel Price (Euro/ton)
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Hardware in Loop Test Setup
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DP2 Hybrid Vessel Model on Typhoon HIL

Port Side 
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The Taiwan Strait Load Profile in DP2 Mode (Port Side)

Source: Vessel Owner Simulated Vessel on Typhoon HIL
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EMS Control Philosophy
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What is different in a Hybrid Vessel?

▪ The Battery is an additional load. 

▪ The extra power (charge power) demand will change the original load profile.

▪ The extra load will push the operation to a high efficiency region, but:

i. It is demanding more power 

ii. Some extra fuel will be consumed due to more energy being delivered.
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Analysis Approach

▪ Consider the Hybrid Vessel only

However,

▪ With EMS Control

Optimized Control of Diesel Gensets

▪ Without EMS Control

Synchronous Control of Diesel Gensets
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Comparison

Parameter With EMS Without EMS

Net Fuel Consumption in 
Cycle

908 L 966.39 L

DG1 Loading % 73.4 % 29.51 %

DG2 Loading % Standby 30 %

DG1 MTBO 1.71 years 1.29 years

DG2 MTBO Standby Mode 1.29 years

DG1 Annual Maintenance 
Cost

€ 50,904 € 67,084

DG2 Annual Maintenance 
Cost

Standby Mode € 67,084
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Savings Estimate with EMS Control

▪ The EMS control has better fuel savings opportunity. The saved fuel with EMS : 966.39 – 908.65 L 

= 57.75 L or 5.98 % improvement.

▪ Assuming a 10-hour operation per day, fuel saved in 1 year on Port and Starboard Side (80% of the time 

in DP2 mode): 

57.75*2*2*365*0.8 = 67,448.5 L 

Data from Chevron suggests MGO has fuel density of 860 kg/m3

Fuel Saved = 58,005 kg of MGO

▪ Taking a  market price of approx. $ 758.5/ton of MGO.

Money saved = $ 758.5*58 = $ 43,997 = € 40,697 per year
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Savings Estimate with EMS Control

▪ Approximate Annual Maintenance Cost of Gensets (Non-Hybrid Vessel) per year = € 108,173.07

▪ With EMS Control:

▪ DG1 Annual Maintenance Saving = € 108,173 – € 50,904  = € 57,268

▪ DG2 was on Standby. It is assumed, due to lesser use of DG2, maintenance cost of DG2 = € 40,000.

▪ DG2 maintenance savings = € 108,173 – € 40,000 = € 68,173

Net Saving = € 40,697 (Fuel) + € 114,536 (DG1 PS & SB) + € 136,346 (DG2 PS & SB) 

= € 291,579 per year.
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Emissions Savings

▪ Estimated Emission Factor for MGO = 3.206 tons CO₂ / ton MGO

▪ Net Emissions Offset = 58*3.206 = 185.96 tons CO₂ per year.

▪ Scenarios:

Source: Leestemaker, Louis. "Maritime shipping and EU ETS An 
assessment of the possibilities to evade ETS costs." (2022).

Tax € / ton CO₂ € 30/ton € 67/ton € 150/ton

Saved Costs 
(Annual)

€ 5,578 € 12,459 € 27,894



51

Battery Technology Investment

▪ 2x1MWh High Energy Batteries + Power Converter Investment

▪ CAPEX = (2* €714,286) + (2 *€250,000) = € 1,928,572

▪ At a fuel price of $758.5/ton MGO,  Simple Payback Time = 6.34 years

▪ Scenarios:

Fuel Price € 700/ton € 800/ton € 900/ton

Net Savings and 
Maintenance 
(year)

€ 303,946 € 309,746 € 315,547

Simple Payback 
Time (SBT)

6.34 years 6.22 years 6.11 years
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Return on Investment

▪ With an assumption of 10 years lifetime.

▪ Return on Investment = € 304,039 * 3 = € 912,117
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Conclusions of this study

▪ Installing BESS and operating them in DP2 mode in combination with the DGs, with the new EMS 

control is profitable.

▪ The new EMS control creates the opportunity for greater fuel savings and delaying the Minimum Time 

Before Overhaul (MTBO).

▪ The BESS solution for this ship has an estimated return on investment, of 0.912 million euros in an 

assumed lifespan of 10 years.

▪ In this control approach, the BESS lifetime will be limited to about 10 years. Expecting a useful life 

beyond this time-period is unfeasible, due to aging and the large number of cycles it would have 

operated. This can be seen as disadvantage, due to the long payback timeframe.
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Key differences between these two studies

▪ Global optimization solutions such as the MILP require knowledge of future events. In this case, the 

load demand profile. This is often difficult to predict for ships, when they operate in modes such as 

Dynamic Positioning due to variable weather patterns and the task they are performing.

▪ The Simple Rules Based Control approach does not require this knowledge.

▪ However, from the performance front, global optimization performs better.

Solution?

▪ Need to investigate ways in which some knowledge of future load demand can be incorporated into the 

EMS, so that it can make better decisions using global optimization.



DC vs AC
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Thomas Edison Nikola Tesla



DC vs AC
Why did AC win?

56

▪ Easier transformation to different voltage levels

▪ Lower losses during long distance transmission

▪ Easier to interrupt (safety)

▪ You can plug it in both ways



DC vs AC
Modern appliances are often based on DC
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DC vs AC
In maritime systems

‘Typical’ DC system ‘Typical’ AC system

M

M
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1. Equipment

2. Technical limitations

3. Technical challenges

4. Operational profile

DC vs AC
Which makes most sense?
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1. Equipment

2. Technical limitations

3. Technical challenges

4. Operational profile

DC vs AC
Which makes most sense?

60690 ∙ 2 = 976𝑉



1. Equipment

2. Technical limitations

3. Technical challenges

4. Operational profile

DC vs AC
Which makes most sense?
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DC Grid Modelling
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DC Grid Modelling
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DC Grid Modelling
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• Inverse Diode I²t = 93000A²s 
• Inverse Diode IFSM   = 4320A (10ms)



DC Grid Modelling
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DC Grid Modelling
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• Inverse Diode I²t = 
93000A²s 

• Inverse Diode IFSM   = 
4320A (10ms)



DC Grid Modelling
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A different vessel
Fuses
Cables
Busbar



1. Equipment

2. Technical limitations

3. Technical challenges

4. Operational profile

DC vs AC
Which makes most sense?
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DC

Motor inverter 97.5-98%

Grid converter 98.5-98.9%

DC/DC converter 98.5-99%

AC/DC converter 97-98%

AC

Variable Frequency Drive 97%

Grid converter 98.5-98.9%

DC – total power train loss 
[kW]

AC – total power train loss 
[kW]

Charging from shore 82.03 81.10

Charging from generator 54.23 60.87

Discharging 54.07/46.76 63.16
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▪ High maintenance cost generator

– Bearing replacement every 2000 hours

– Isolation failure

▪ Often replace filter capacitors

▪ Often leakage on the filter inductances

Filter design & Power Quality
Complaints:
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Filter design & Power Quality
A measurement result
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Filter design & Power Quality
A measurement result
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Filter design & Power Quality
A measurement result



73

Filter design & Power Quality
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Filter design & Power Quality
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Power Quality
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Power Quality and other phenomena

Power Quality

Electro/Magnetic 
Phenomena

EMC

Slow variation [U(t),  
f(t)]

High variation  
[U(t),  f(t)]

Class 
requirements
*IEC 61000-3-3 
*IEC 61000-2-4
*IEC 61000-4-15
*IEEE 519
*EN 50160

Class 
requirements
IEC 60533 
IEC 60092
*IEC 61800-3

Transients U, I
Harmonics

Radiation 
Emission
Conducted 
Emission

Radiation 
Immunity

Conducted 
Immunity

Electrostatic
Discharge

EMF

*Land standards
*Land standards

Class requirements
*IEC 62305

*Land standards
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Harmonics
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Harmonics
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Harmonics
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Harmonics
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Filter design & Power Quality
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Filter design & Power Quality
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Filter design & Power Quality
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The effect of switching converters

𝑉𝑜𝑙𝑡𝑎𝑔𝑒 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ∙ 𝑖𝑚𝑝𝑒𝑑𝑎𝑛𝑐𝑒
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▪ LCL filter

▪ High frequency (EMC) filter (30kHz – 300kHz)

▪ High frequency grounding

▪ Active Harmonic Filter (< 49th harmonic)

Filter design & Power Quality
What can we do?
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Filter design & Power Quality
Active Harmonic Filter
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Filter design & Power Quality
Recreating the measured signal
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Filter design & Power Quality
After improving the filter
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▪ Improper filtering and earthing is the main cause for power quality and EMC 

issues that can show in decision-making.

▪There are many factors that have to be taken into account when choosing for 

an AC or DC electrical topology.

▪A BESS along-with a well-designed EMS, can ensure diesel generators 

operate at an optimal loading point, reduce fuel consumption and increase 

maintenance savings.

▪A well-designed EMS needs to have intelligent decision-making capabilities.

▪Choosing a battery size for your vessel is not a trivial decision. Many factors 

have to be taken into account for it to be profitable.

Key takeaways



Thank you for your attention!

Questions?
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